The second Painlevé hierarchy and the stationary KdV hierarchy

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Toda Hierarchy and the Kdv Hierarchy

McKean and Trubowitz [2] showed that the theory of the KdV equation ∂ ∂t g(x, t) = ∂ 3 ∂x 3 g(x, t) − 6g(x, t) ∂g ∂x (x, t). is intimately related to the geometry of a related hyperelliptic curve of infinite genus, the Bloch spectrum B g t of the operator L g t : ψ → d 2 dx 2 ψ(x) + g(x, t)ψ(x), where g t = g(x, t). As was known classically, B g t is independent of t, when g(x, t) evolves accor...

متن کامل

Painlevé test and the first Painlevé hierarchy

Starting from the first Painlevé equation, Painlevé type equations of higher order are obtained by using the singular point analysis.

متن کامل

Lamé Potentials and the Stationary (m)kdv Hierarchy

A new method of constructing elliptic finite-gap solutions of the stationary Korteweg-de Vries (KdV) hierarchy, based on a theorem due to Picard, is illustrated in the concrete case of the Lamé-Ince potentials −s(s+1)P(z), s ∈ N (P(.) the elliptic Weierstrass function). Analogous results are derived in the context of the stationary modified Korteweg-de Vries (mKdV) hierarchy for the first time.

متن کامل

The Discrete Painlevé I Hierarchy

The discrete Painlevé I equation (dPI) is an integrable difference equation which has the classical first Painlevé equation (PI) as a continuum limit. dPI is believed to be integrable because it is the discrete isomonodromy condition for an associated (single-valued) linear problem. In this paper, we derive higher-order difference equations as isomonodromy conditions that are associated to the ...

متن کامل

Function of the Kdv Hierarchy

In this paper we construct a family of commuting multidimen-sional differential operators of order 3, which is closely related to the KdV hierarchy. We find a common eigenfunction of this family and an algebraic relation between these operators. Using these operators we associate a hy-perelliptic curve to any solution of the stationary KdV equation. A basic generating function of the solutions ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publications of the Research Institute for Mathematical Sciences

سال: 2004

ISSN: 0034-5318

DOI: 10.2977/prims/1145475502